Categories
Uncategorized

歧路旅人1

這隻感覺萌萌噠

不行我對祭司沒有抵抗力
Categories
Uncategorized

祭路旅人2祭司

好萌啊啊一見鐘情

Categories
Uncategorized

歧路旅人2

魔導感覺就像變態一樣

路邊的人隨便偷窺還蠻好玩的

第一次打敗幸運貓!!!
Categories
Uncategorized

獵人

Categories
Uncategorized

歧路旅人2 倒在路邊的…

晚上是強盜,早上是情報犯
Categories
Uncategorized

歧路旅人2 舞者篇

舞者的技能是跟街上的人要禮物XD 實在也太爽wwww
感覺老爹很北送
她們爸爸的床長得比較不一樣
來了一個好有朝氣的女孩。她切菜好像小當家喔
Categories
Uncategorized

歧路旅人2商人篇

從小跟著父親從商,把一個村子變得繁榮,也很會做買賣,
帥叔叔要走惹QAQ
看來要工業革命惹?啊他們的時代還沒有蒸氣火車,好像在看歷史
原來他爸爸是禿頭
啊這不就是那個救了誰的藥師
好可憐嗚嗚,他們只能吃土司邊而且還要搶
超級慣老闆出現
Categories
Uncategorized

How to develop a chatbot?

To develop a chatbot, you need to follow these general steps:

  1. Define the purpose and scope of your chatbot. Determine what your chatbot will do and what questions it will be able to answer.
  2. Choose a chatbot development platform that fits your needs. Some popular platforms include Dialogflow, IBM Watson, and Microsoft Bot Framework.
  3. Design your chatbot’s conversation flow. This involves creating a flowchart of how your chatbot will respond to different user inputs.
  4. Develop the chatbot’s natural language processing (NLP) capabilities. This allows your chatbot to understand and interpret user input.
  5. Train your chatbot with relevant data. This includes providing it with sample questions and answers to help it learn how to respond to different user inputs.
  6. Test your chatbot to ensure it works correctly and efficiently. You may need to iterate on steps 3-5 to refine your chatbot’s functionality.
  7. Deploy your chatbot to the desired platform, whether that be a website, messaging app, or other platform.
  8. Continuously monitor and improve your chatbot’s performance. This includes collecting user feedback and updating your chatbot’s training data and conversation flow as needed.

Overall, developing a chatbot can be a complex process, but by following these steps and using the right tools and platforms, you can create a chatbot that meets your specific needs and provides a valuable user experience.

Categories
Uncategorized

防毒軟體推薦

因為有很多不同的防毒軟體可以選擇,所以很難推薦「最好的」。然而,以下是一些值得考慮的防毒軟體:

  1. Bitdefender Antivirus Plus:Bitdefender是一個經過驗證的防毒軟體,它可以在保護您的設備免受病毒、間諜軟體和其他惡意軟體方面提供優秀的保護。此外,它還具有多種功能,例如防火牆、父母監控和網路安全工具。
  2. Norton AntiVirus Plus:Norton是另一個經過廣泛測試的防毒軟體,它可以保護您的設備免受病毒、間諜軟體和其他威脅。Norton還提供了一個簡單易用的介面,讓您輕鬆管理您的安全性。
  3. Kaspersky Anti-Virus:Kaspersky是一個知名的防毒軟體品牌,它具有出色的防護能力,可以檢測並清除幾乎所有形式的惡意軟體。此外,它還具有實用的功能,例如防火牆、家長監控和網路安全工具。
  4. McAfee AntiVirus Plus:McAfee是另一個優秀的防毒軟體,它可以保護您的設備免受病毒、間諜軟體和其他威脅。它還具有一個簡單易用的介面和一些實用的功能,例如防火牆、父母監控和網路安全工具。

這些防毒軟體都是值得考慮的選擇,但請注意,任何防毒軟體都不能提供100%的保護。最好的安全性實踐是使用防毒軟體,並保持您的作業系統和其他軟體更新到最新版本,避免點擊垃圾郵件和不信任的網站,以及使用強密碼和多因素身份驗證。

Categories
Uncategorized

簡單說一下人工智慧發展史

人工智慧(Artificial Intelligence, AI)的發展可以追溯到上個世紀50年代,當時學者們開始研究如何讓機器能夠像人類一樣思考、學習和解決問題。

在接下來的數十年中,AI 經歷了多次起落,其發展史可以概括為以下幾個階段:

  1. 符號主義 AI:20世紀50年代至70年代初期,研究者主要採用符號主義方法,即用符號來表示知識、推理和問題求解,代表性的研究包括Eliza、Shakey等。
  2. 連結主義 AI:20世紀80年代,隨著計算機技術的發展,研究者開始將注意力轉向神經網絡和深度學習等技術,試圖模擬人類大腦的工作方式。代表性的研究包括Backpropagation和Boltzmann Machine等。
  3. 統計學習 AI:20世紀90年代至2000年代初期,統計學習方法得到了廣泛應用,特別是支持向量機(SVM)和隨機森林(Random Forest)等。這些方法在圖像識別、語音識別等領域獲得了顯著的成果。
  4. 深度學習 AI:近年來,隨著大數據、計算能力和算法的提升,深度學習技術得到了快速發展。深度學習通過建立多層神經網絡模型,實現了在多個領域超越人類水平的成果,如圍棋、語音識別、自然語言處理等。
  5. 綜合 AI:未來,人工智慧將越來越多地應用到各個領域中,從自動駕駛到醫療診斷,從工業製造到金融投資。AI將更加綜合化,整合各種技術,包括機器學習、自然語言處理、計算機視覺、知識圖譜等,以實現更廣泛、更具深度的應用。

The development of Artificial Intelligence (AI) can be traced back to the 1950s when researchers began exploring how machines could think, learn, and solve problems like humans.

Over the following decades, AI experienced several ups and downs, which can be summarized into the following stages:

  1. Symbolic AI: from the 1950s to the early 1970s, researchers mainly used the symbolic approach, representing knowledge, reasoning, and problem-solving with symbols. Representative research includes Eliza and Shakey.
  2. Connectionist AI: in the 1980s, with the development of computer technology, researchers began to focus on neural networks and deep learning, attempting to simulate the way the human brain works. Representative research includes Backpropagation and Boltzmann Machine.
  3. Statistical learning AI: from the 1990s to the early 2000s, statistical learning methods were widely applied, especially support vector machines (SVM) and random forests. These methods achieved significant results in image recognition, speech recognition, and other fields.
  4. Deep learning AI: in recent years, with the improvement of big data, computing power, and algorithms, deep learning technology has rapidly developed. By building a multi-layer neural network model, deep learning has achieved results that surpass human levels in many fields, such as Go, speech recognition, natural language processing, etc.
  5. Integrated AI: in the future, AI will be increasingly applied in various fields, from autonomous driving to medical diagnosis, from industrial manufacturing to financial investment. AI will become more integrated, integrating various technologies, including machine learning, natural language processing, computer vision, and knowledge graphs, to achieve broader and deeper applications.